Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

THIS PAGE INTENTIONALLY LEFT BLANK

HMC849LP4CE

MICROWAVE CORPORATION v04.0613

Typical Applications

The HMC849LP4CE is ideal for:

- Cellular/4G Infrastructure
- WiMAX, WiBro \& Fixed Wireless
- Automotive Telematics
- Mobile Radio
- Test Equipment

Functional Diagram

Features

High Isolation: up to 60 dB
Single Positive Control: 0/+3V to +5 V
High Input IP3: +52 dBm
Non-Reflective Design
"All Off" State
16 Lead $4 \times 4 \mathrm{~mm}$ QFN Package: $16 \mathrm{~mm}^{2}$

General Description

The HMC849LP4CE is a high isolation non-reflective DC to 6 GHz GaAs pHEMT SPDT switch in a low cost leadless surface mount package. The switch is ideal for cellular/WiMAX/4G Infrastructure applications yielding up to 60 dB isolation, low 0.8 dB insertion loss and +52 dBm input IP3. Power handling is excellent up through the 5-6 GHz WiMAX band with the switch offering a P1dB compression point of +31 dBm . On-chip circuitry allows a single positive voltage control of $0 /+3 \mathrm{~V}$ or $0 /+5 \mathrm{~V}$ at very low DC currents. An enable input (EN) set to logic high will put the switch in an "all off" state.

Electrical Specifications, $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Vctl}=0 / \mathrm{Vdd}, \mathrm{Vdd}=+3 \mathrm{~V}$ to +5 V , 50 Ohm System

Parameter	Frequency	Min.	Typ.	Max.	Units
Insertion Loss	$\begin{aligned} & \mathrm{DC}-2.0 \mathrm{GHz} \\ & 2.0-4.0 \mathrm{GHz} \\ & 4.0-6.0 \mathrm{GHz} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.0 \\ & 1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation (RFC to RF1/RF2)	$\begin{aligned} & \mathrm{DC}-2.0 \mathrm{GHz} \\ & 2.0-4.0 \mathrm{GHz} \\ & 4.0-6.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 53 \\ & 48 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \\ & 52 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Return Loss (On State)	$\begin{aligned} & \mathrm{DC}-4.0 \mathrm{GHz} \\ & 4.0-6.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 17 \\ & 13 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Return Loss (Off State)	DC - 6.0 GHz		15		dB
$\begin{array}{ll}\text { Input Power for } 1 \mathrm{~dB} \text { Compression } & \begin{array}{l}+3 \mathrm{~V} \\ +5 \mathrm{~V}\end{array}\end{array}$	$0.35-4.0 \mathrm{GHz}$	$\begin{aligned} & 29 \\ & 34 \end{aligned}$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$		dBm dBm
Input Third Order Intercept (Two-Tone Input Power $=+7 \mathrm{dBm}$ Each Tone)	DC - 6.0 GHz		52		dBm
Switching Speed tRISE, tFALL (10/90\% RF) tON, tOFF (50% CTL to $10 / 90 \%$ RF)	DC-4.0 GHz		$\begin{gathered} 80 \\ 150 \end{gathered}$	600	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NON-REFLECTIVE SWITCH, DC-6 GHz

Insertion Loss

Isolation Between

Ports RFC and RF1 / RF2

0.1 and 1 dB Input Compression

Point, Vdd = 5V, Linear

Return Loss ${ }^{[1]}$

Isolation Between Ports RF1 and RF2

0.1 and 1 dB Input Compression

Point, Vdd = 3V, Linear

[1] RFC is reflective in "all off" state.
For price, delivery and to place orders: Hittite Microwave Corporation, 2 Elizabeth Drive, Chelmsford, MA 01824

0.1 and 1 dB Input Compression

Point, Vdd = 5V

Input Third Order Intercept
Point, Vdd = 5V, Linear

Input Third Order Intercept Point, Vdd = 5V

HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 6 GHz
0.1 and 1 dB Input Compression

Point, Vdd = 3V

Input Third Order Intercept Point, Vdd = 3V, Linear

Input Third Order Intercept Point, Vdd = 3V

Absolute Maximum Ratings

Bias Voltage (Vdd)	7V
Control Voltage (Vctl, EN)	-1 V to Vdd +1V
RF Input Power *Through Path $3 \mathrm{~V} / 5 \mathrm{~V}$ Termination Path $3 \mathrm{~V} / 5 \mathrm{~V}$	$\begin{aligned} & 30.60 / 33 \mathrm{dBm} \\ & 26.4 \mathrm{dBm} \end{aligned}$
Channel Temperature	$150{ }^{\circ} \mathrm{C}$
Continuous Pdiss ($\mathrm{T}=85^{\circ} \mathrm{C}$) (derate $17.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for through path, and $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for termination path above $85^{\circ} \mathrm{C}$) Through Path Termination Path	$\begin{aligned} & \text { 1.144 W } \\ & 0.441 \mathrm{~W} \end{aligned}$
Thermal Resistance (channel to package bottom) Through Path Termination Path	$\begin{aligned} & 56.8^{\circ} \mathrm{C} / \mathrm{W} \\ & 147.3^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)	Class 1A

* The RF input power is quite lower than the breakdown power levels. Hence, the only concern with this product is the thermal limit.

Bias Voltage \& Current

Vdd (V)	Idd (Typ.) (mA)
3	0.80
5	0.85

Digital Control Voltages

State	Bias Condition
Low	0 to $+0.8 \mathrm{Vdc} @<1 \mu \mathrm{~A}$ Typical
High	+2.0 to $+5.0 \mathrm{Vdc} @ 30 \mu \mathrm{~A}$ Typical

Truth Table

Control Input		Signal Path State	
Vctl	EN	RFC - RF1	RFC - RF2
Low	Low	OFF	ON
High	Low	ON	OFF
Low	High	OFF	OFF
High	High	OFF	OFF

HMC849LP4CE
MICROWAVE CORPORATION

HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 6 GHz

Outline Drawing

NOTES:

1. LEADFRAME MATERIAL: COPPER ALLOY
2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
4. PAD BURR LENGTH SHALL BE 0.15 mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05 mm MAXIMUM.
5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm .
6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND
7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[1]}$
HMC849LP4CE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 $^{[2]}$	$\frac{\mathrm{H} 849}{X X X X}$

[^0]
Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Vdd	Supply Voltage.	
2	Vctl	Control input. See truth and control voltage tables.	
3, 9, 12	RFC, RF1, RF2	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
$\begin{gathered} 4,6,7,8 \\ 13,14,15,16 \end{gathered}$	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
5	EN	Enable. See truth and control voltage tables.	
10, 11	GND	Package bottom must also be connected to PCB RF ground.	$\underline{I}^{G N D}$

Application Circuit

HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 6 GHz

Evaluation PCB

List of Materials for Evaluation PCB $106975{ }^{[1]}$

Item	Description
J1- J3	PC Mount SMA RF Connector
J4- J8	DC Pin
C1- C4	100 pF Capacitor, 0402 Pkg.
U1	HMC849LP4CE SPDT Switch
PCB [2]	106965 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

Notes:

[^0]: [1] 4-Digit lot number XXXX
 [2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$

